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Abstract: Many real-world problems in the production and logistics business are NP-
hard even in their deterministic representation, and actually also show stochastic 
behaviour, where even the mathematical description of the – frequently empirical – 
distributions is difficult or even impossible.  Therefore, an approach is acquired that 
enables the search for valid and reasonably good solutions under representation of the 
stochastic system behaviour.  A suitable approach is to combine heuristic optimization 
with simulation techniques.  This paper discusses how Monte-Carlo simulation can be 
combined with heuristics and meta-heuristics in order to efficiently solve such 
stochastic combinatorial optimization problems.  The application is illustrated with 
examples in two different fields, including logistics and transportation – e.g. vehicle 
routing problems and inventory problems – as well as manufacturing and production 
– e.g. scheduling problems. 

1 Introduction 
There is an emerging interest of introducing randomness into combinatorial 
optimization problems as a way of describing new real problems in which most of the 
information and data cannot be known beforehand.  This tendency can be observed in 
Van Hentenryck and Bent (2010), which provides an interesting review of many 
traditional combinatorial problems with stochastic parameters.  Thus, those authors 
studied Stochastic Scheduling, Stochastic Reservations and Stochastic Routing in 
order to make decisions on line, i.e., to re-optimize solutions when their initial 
conditions have changed and, therefore, are no longer optimal.  This type of analysis 
has designed the so-called Online Vehicle Routing Problems, in which re-
optimization is needed apart from a previous situation.  This set of routing problems 
seems to be well analyzed with the use of stochastic hypothesis in their definitions 
(Bent and Van Hentenryck, 2007) providing more reality in their formulation.  
Another routing field in which randomness has also been developed is the resolution 
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of inventory routing problems where the product usage is stochastic (Hemmelmayr et 
al. 2010).  Bianchi et al (2009) have written an interesting survey of the appropriate 
metaheuristics to solve a wide class of combinatorial optimization problems under 
uncertainty.  The aforementioned survey is a good reference for obtaining an 
appropriate list of articles regarding the use of meta-heuristics for solving Stochastic 
Combinatorial Optimization Problems (SCOPs) in different application fields. 

In this paper we discuss how Monte-Carlo simulation (MCS) can be combined with 
heuristics and meta-heuristics in order to efficiently solve SCOPs in order to give an 
overview on the recent progress in this research area.  Examples from two application 
fields illustrate the application of this hybrid methodology.   

The paper is structured as follows: Section 2 describes the main ideas behind the 
generic type of algorithms we propose by combining simulation with heuristics (Sim-
heuristic algorithms).  Section 3 provides an example of application to SCOPs in the 
field of logistics and transportation.  Likewise, Section 4 reviews an example in the 
field of manufacturing and production.  Finally, Section 5 summarizes the main 
conclusions of this work. 

2 Basic Approach of Sim-heuristic Algorithms 
As shown in Figure 1, a Sim-heuristic approach combines combinatorial-optimization 
methodologies – e.g. heuristics and/or meta-heuristics – with simulation 
methodologies – e.g. Monte-Carlo Simulation, Discrete Event Simulation (DES), 
agent-based approaches, etc. – in order to efficiently deal with the two components of 
a SCOP instance: the optimization nature of the problem and its stochastic nature.  In 
general, this is a simulation-optimization (SimOpt) approach with the simulation as 
evaluation function of the optimization algorithm (cp. März et al. 2010), which is 
defined by the German VDI as “Category D” approach (VDI 2013). Some examples 
of Sim-heuristic applications to different fields can be found in the optimization-
simulation literature (Juan et al., 2011a, Peruyero et al. 2011; Gonzalez et al. 2012; 
Caceres et al. 2012).  Typically, given a SCOP instance, a heuristic/meta-heuristic 
algorithm is run in order to perform an oriented search inside the solution space.  This 
iterative search process aims at finding the feasible solution with the best possible 
value in the search space, which is expected to be near to the actual optimum as well.  
During the iterative search process, the algorithm must deal with the stochastic nature 
of the SCOP instance.  One natural way to do this is by taking advantage of the 
capabilities simulation methods offer to manage randomness.  Of course, other 
approaches can also be used instead of simulation – e.g. dynamic programming, fuzzy 
logic, etc.  However, under the presence of historical data on stochastic behaviour, 
simulation allows for developing models that are both accurate and flexible.  
Specifically, randomness can be modelled utilizing a best-fit probability distribution 
– including parameterization – without any additional assumptions or constraints.  
Thus, simulation is usually integrated with the heuristic/meta-heuristic approach and 
it frequently provides dynamic feedback to the searching process in order to improve 
the final outcome.  In some sense, simulation allows for extending existing and highly 
efficient meta-heuristics – initially designed to cope with deterministic problems – so 
that they can also be employed to solve SCOPs. 

Obviously, one major drawback of this approach is that the results are not expected to 
be optimal anymore, since Sim-heuristics are combining two approximate 
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methodologies.  Nevertheless, real-life problems are complex enough and usually NP-
hard even in their deterministic versions.  Therefore, Sim-heuristics constitute a quite 
interesting alternative for most practical purposes, since they represent relatively 
simple and flexible methods which are able to provide near-optimal solutions to 
complex real-life problems in reasonable computing time.  

 

Figure 1: Overview of the Sim-heuristic approach 

3 Case Example in Logistics and Transportation 
The Inventory Routing Problem with stochastic demands (IRPSD) is an NP-hard 
problem that can be described as follows (Figure 2): consider a Capacitated Vehicle 
Routing Problem (CVRP) (Golden et al. 2008) with n nodes or retailing centers (RC), 
plus the depot.  Each RC owns an inventory, which is managed by the central depot.  
For each RC, the inventory level at the end of a period depends on the initial stock 
level and also on the end-clients’ demands during that period.  These end-clients’ 
demands are stochastic in nature.  It will be assumed that, for each RC, it has been 
possible to use historical data to model end-clients’ demands through a theoretical or 
empirical probability distribution.  Notice that no particular assumption is made on 
the type of distribution used to model these demands.  Therefore, at the end of each 
period there might be some costs associated with inventory holding and inventory 
stock-outs.  These costs might be incorporated into the decision-making process and 
added to the distribution or routing costs, which are usually based on traveling 
distances and times.  At the end of each period, inventory levels are registered by the 
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RC and updated in the central depot, so that a new routing strategy is defined for the 
new period taking into account the new data.  The goal is to minimize total expected 
costs (distribution plus inventory-related costs) in each single-period scenario. 

 

Figure 2: General scheme of the IRP with stochastic demands 

When properly combined with heuristic techniques, MCS has proved to be extremely 
useful for solving different routing problems with stochastic demands (Juan et al. 
2011a; Gonzalez et al. 2012).  In the IRPSD context, Caceres et al. (2012) propose a 
hybrid approach which also combines MCS with an efficient CVRP heuristic.  
Specifically, given a customer, the following policies are considered:  
1. no refill for that customer;  
2. refill up to one quarter of its capacity;  
3. refill up to half of its capacity;  
4. refill up to three quarters of its capacity; and 
5. full refill.   

Thus, for each combination of customer-service policy, MCS is used to obtain 
estimates of the expected inventory costs associated with it, including both surplus 
and shortage costs.  In the second step of the procedure, the authors consider the worst-
case scenario from a distribution point of view, i.e., all customers receive a full refill.  
In this scenario, a fast heuristic is used to obtain a ‘good’ solution for the associated 
CVRP.  This solution will provide an estimate of the total distribution costs under the 
full-refill policy.  In the third step, they estimate for each customer the routing 
“marginal savings”, i.e., the reduction in distribution costs associated with each non-
full-refill policy.  In order to do this, a fast heuristic is used again to solve a large set 
of CVRPs.  Once these marginal costs have been estimated, for each customer an 
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approximated value for the total costs associated with each eligible policy can be 
obtained by simply adding up estimated routing and inventory costs.  Therefore, for 
each customer, the associated eligible policies can be sorted from lower to higher total 
costs, thus defining a priority policy rank for each customer.  In the fourth step, the 
‘top’ policy for each customer (i.e., the one showing the lowest total cost) is selected, 
and a pseudo-optimal solution is obtained for the corresponding CVRP by using an 
efficient algorithm, e.g., the SR-GCWS-CS (Juan et al., 2011b).  Finally, in the fifth 
step, a multi-start process is carried out. At each iteration of this multi-start process, a 
new policy is randomly selected for each customer and, in a similar way as in the 
previous step, a new pseudo-optimal solution is obtained for the corresponding CVRP.  
The best solution found so far is recorded.   

After performing an extensive computational test, the authors show that their 
‘integrated’ methodology outperforms the traditional sequential approach, in which 
each individual inventory level is optimized first and then the resulting vehicle routing 
problem is solved.  Notice that their simulation-optimization approach can consider 
personalized refill policies for each customer, which contributes to significantly 
reduce the total costs over other approaches using standard refill policies. Figure 3 
shows an example of the routing component of a solution to the IRPSD.  In this 
solution, it can be observed that:  

 the routing plan might not necessarily include all customers; and  

 the refill policy can be different for each customer (different symbols represent 
different refill policies). 

 

Figure 3: Visual representation of the routing component of a solution 

4 Case Example in Manufacturing and Production 
The Permutation Flow Shop Problem with Stochastic Times (PFSPST) can be seen as 
a generalization of the classical Permutation Flow Shop Problem (PFSP, Pinedo 1982) 
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in which the processing time of each job i in each machine j is not a constant value, 
but instead a random variable, Pij, following a non-negative probability distribution – 
e.g. Log-Normal, Exponential, Weibull, Gamma, etc.  Since uncertainty is present in 
most real-life processes and systems, considering random processing times represents 
a more realistic scenario than simply considering deterministic times.  As a result, 
unforeseen circumstances can lead to sudden changes in the processing time of certain 
jobs in certain machines, which is likely to have noticeable effects on the predicted 
makespan – i.e., the total completing time (Figure 4).  Therefore, one goal that can be 
considered when dealing with the PFSPST is to determine a sequence of jobs which 
minimizes the expected makespan or mean time to completion of all jobs.  For these 
problems, simulation-optimization techniques and, in particular, the combination of 
simulation with meta-heuristics constitutes also a promising approach yet to be 
explored in its full potential.  Figure 4 illustrates a simple PFSP with three jobs and 
three machines, where Oij represents the operation time of job i in machine j (1 ≤  i  ≤ 
3, 1 ≤  j ≤ 3).  Notice that, for a given permutation of jobs, even a single change in the 
processing time of one job in one machine (O21 in this case) can have a noticeable 
impact on the value of the final makespan.  

 

Figure 4: Variations in makespan due to stochastic processing times 

As with other combinatorial optimization problems, a number of different approaches 
and methodologies have been developed to deal with the PFSP.  These approaches 
range from complete optimization methods – such as linear and constraint 
programming – which can provide solutions to small-sized problems, to approximate 
methods – such as heuristics and meta-heuristics – which can provide near-optimal 
solutions for medium- and large-sized problems.  Moreover, some of these 
methodologies are able to provide a set of alternative near-optimal solutions from 
which the decision-maker can choose according to his/her specific preferences.  
However, the situation with the PFSPST is quite different.  In the articles by Gourgand 
et al. (2005), Dodin (1996), Honkomp et al. (1997), and Baker and Altheimer (2012), 
simulation-based techniques have been used to get results for the PFSPST. In most of 
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these articles, though, assumptions are made about the probability distributions 
employed to model processing times – e.g. Normal or Exponential – or about the 
restricted size of the instances being analysed.  Nonetheless, in a real-life scenario, 
the specific distributions to be used will have to be fitted from historical data 
(observations) leading to empirical distributions.  The assumption of processing times 
following a Normal distribution is, in our opinion, quite unrealistic and restrictive, 
since distributions such as the Log-normal or the Weibull are usually much better 
candidates to model processing times with positive values. 

Thus, Peruyero et al. (2011) propose a simulation-optimization algorithm described 
next for solving the PFSPST.  The main idea behind their approach is to transform the 
initial PFSPST instance into a PFSP instance and then to obtain a set of near-optimal 
solutions for the deterministic problem by using an efficient PFSP algorithm.  The 
transformation step is achieved by simply considering the expected value of each 
stochastic processing time in the PFSPST as the constant processing time in the PFSP.  
Since any PFSP solution will be also a feasible PFSPST solution, it is possible to use 
Monte Carlo simulation to obtain estimates for the expected makespan.  That is, it is 
possible to obtain these estimates by iteratively reproducing the stochastic behaviour 
of the processing times in the sequence of jobs given by the PFSP solution.  Of course, 
this simulation process will take as many iterations as necessary to obtain accurate 
estimates.  Simulation is used here to determine which solution, among the best-found 
deterministic ones, shows a lower expected makespan when considering stochastic 
times.  This strategy assumes that a strong correlation exists between near-optimal 
solutions for the PFSP and near-optimal solutions for the PFSPST:  Good solutions 
for the PFSP are likely to represent good solutions for the PFSPST.  However, not 
necessarily the best-found PFSP solution will become the best-found PFSPST 
solution, since its resulting makespan might be quite sensitive to variations in the 
processing times.  If there are indications for such as sensitivity, specific sensitivity 
studies could help to validate the results or at least to become aware of the dimension 
of uncertainly applied (cp. Rabe et al. 2010). 

As the authors conclude, their approach offers a practical perspective which is able to 
deal with more realistic scenarios: by integrating Monte Carlo simulation in the 
methodology, it is possible to naturally consider any probabilistic distribution for 
modelling the random job processing times. 

5 Conclusions and Outlook 
In this paper, we have discussed how Monte-Carlo simulation can be combined with 
meta-heuristics in order to develop hybrid algorithms able to solve complex stochastic 
combinatorial optimization problems.  The general scheme of these ‘sim-heuristic’ 
algorithms has been introduced, and some examples of applications to different fields 
have been described.  These examples include stochastic versions of the well known 
inventory routing problem as well as the flow-shop problem.  This work has focused 
on Monte-Carlo simulation, only.  However, other types of simulation –e.g. discrete-
event simulation– can be also hybridized with meta-heuristic approaches to solve 
complex optimization problems of stochastic nature in which the time factor must be 
also considered.  As an example, current studies are extended to the problem of mid-
term scheduling of production under relaxed constraints, e.g. with algorithms that 
allow for changing the factory’s capabilities and capacities for the future.  Such an 
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approach leads to so-called ‘changing steady state’ systems that show a high 
complexity with respect to the high number and diversity of relationships.  DES seems 
a good candidate to approach this kind of problems in a combination with heuristic 
algorithms (cp. Rabe and Deininger 2013).  
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